

2017 National Conference

August 27-30, 2017

Omni Fort Worth Hotel • Fort Worth, Texas

Redbook: Guidelines for Hazard Evaluation Procedures Redbook Overview

Kelsey Forde CIH CHMM Owner, Principal EHS Professional Parvati Consulting LLC

klforde@parvaticonsulting.com

(505)967-8917 www.parvaticorp.com

Historical Perspective

- Published By Center for Chemical Process Safety (CCPS)
 - ▶ Established in 1985 by American Institute of Chemical Engineers
 - Develop & Disseminate Technical Information Supporting HE
 - Prevention of Major Chemical Accidents
 - ▶ Guidelines 1st Published in 1985
- Current (3rd Ed) Guidelines Encompass
 - Lessons Learned from Industry Accidents
 - ▶ US Chemical Safety & Hazard Investigation Board (CSB)
 - Recommendations for Hazard Evaluations
 - http://www.csb.gov/
 - Process Safety Management Implementation
 - Laws & Regulations
 - International Standards
 - Experience Gained Since 1985 with Performing Hazard Evaluations

Redbook Sum of Parts

- Part I Hazard Evaluation Procedures
 - "Guidelines"
 - ▶ Describes Methods Used to Identify & Assess Hazards
 - Management Overview
 - ▶ Nine Chapters
 - ► Follow Flow of Performing Hazards Analysis
- Part II Worked Examples and Appendices
 - Companion to the "Guidelines"
 - ► Examples for Novice Analyst
 - Examples for Training

Redbook Do's & Don'ts

- Guidelines Do Provide
 - ▶ Insights To Be Considered When Making Risk Management Decisions & Designing Risk Management Programs
 - Expectations for High Quality Hazard Evaluations
 - Aid for Initial Training of Hazards Analysts
 - ► Reference Material for Experienced Hazard Analysts
- Guidelines Don't Provide
 - ► A Complete Hazards Analysis Program
 - Specific Advice On How to Establish HA Program
 - ► Replace Hazards Evaluation Experience of Qualified Analysts

Redbook Improvements - 3rd Edition

- ► In Depth Discussion Inherent Safety Reviews & HE Concepts
- ► HE Methods Divided
 - ▶ Non-Scenario Based
 - Scenario Based
- Scenario Risk Estimation To Determine Adequacy of Controls

Redbook Improvements - 3rd Edition

- New Sections
 - ► HE with Layer of Protection Analysis (LOPA)
 - ► Evaluating Procedure Based Operations
 - Evaluating Programmable Systems
 - ► Facility Siting Issues
 - Human Factors Added to Human Reliability Analysis
 - ► HE Reviews for Management of Change
 - ▶ Integration of HE with Reliability & Security
- Additional Checklists & Forms In Chapters & Appendix A

Redbook Outline & Flow

- Summarizes the Use of HE Techniques as Integral Part of a Process Safety Management Program
- Describes How HE Techniques Used Throughout Life of Process/Facility
- ► Realistic Expectations for Managers
 - What HE Provides
 - ► Limitations of Common Techniques

- ► HE Organized Effort to Identify & Analyze the Significance of Hazards/Hazardous Situations with a Process or Activity
- ► HE Used to Pinpoint Weaknesses in Design & Operation of Facilities that Could Lead to Impact from Hazards
- HE Information to Aid in Decisions for Improving Safety & Managing Risk of Operations
- ► HE Focus on Process Safety Issues With Workers & Public
- ► HE Complement Traditional Health & Safety Worker Assessments

- ► HE Performed Throughout Life of Process
- ► Lifecycle Approach
 - ► Early Stages of R&D
 - ▶ Detailed Design & Construction
 - ► Periodically Throughout Operation
 - ▶ Decommissioning & Dismantlement
- ► Efficiently Reveal Deficiencies In Design & Operation

- Non-Scenario Based
 - Preliminary Hazards
 Analysis
 - Safety Review
 - Relative Ranking
 - Checklist Analysis

- Scenario Based
 - What-If Analysis
 - What-If/Checklist Analysis
 - Hazard & Operability (HazOp) Studies
 - Failure Modes & Effects Analysis (FMEA)
 - Fault Tree Analysis (FTA)
 - Event Tree Analysis (ETA)
 - Cause Consequence
 Analysis (CCA) & Bow Tie
 Analysis
 - Other Techniques

- Redbook Part I Guidance on Process Safety Management Program
- ► Redbook Part II Aid in Training & Experience
- Redbook Part I & Part II
 - Analyst Understand Basics of HE
 - ▶ Performing HE of Simple Processes Using Simple HE Methods
- ► Redbook Part I & Part II Together with Experience
 - ► Analyst Scope, Organize, Lead, & Document HE
 - ► Facilitator Role for Analyst

- Benefits of HE Program
 - ► Fewer Incidents Over Life of Process
 - ► Reduced Consequences of Incidents
 - ► Improved Emergency Response (Understanding of Hazards)
 - ► Improved Training & Understanding of Process
 - ► More Efficient & Productive Operations
 - ► Improved Regulatory & Community Relations

- ► HE Program Requires Significant Investment
 - ► Completion of HE Requires Time (Hours to Months)
 - ▶ Documentation, Training, & Staff/Material Resources
- Need Strategy to Use Properly Trained/Skilled Analysts
- Select Appropriate HE Technique
 - ► Technique Commensurate with Problem
 - Available Information
 - ► Consequence/Risk
 - ► Ensure Effort Not Wasted by Over-Studying a Problem with a More Detailed Approach than Necessary

- HE Limitations
 - Never 100% Certainty for Identification of All Hazards, Events, Causes, and Effects
 - ▶ Results & Benefits Cannot Be Directly Verified
 - ▶ Based on Existing Knowledge or Process/Operation
 - Quality Reflected in Drawing Accuracy, Procedure Accuracy, & Process Knowledge
 - ▶ Dependent on Subjective Judgment, Assumptions, & Experience of Analysts
 - ► Cannot Guarantee Incidents Will Not Occur
- Limitation Provides Justification
 - ▶ Periodic HE Throughout Lifecycle
 - Justification for Management of Change (MOC)

- ► HE Provides Valuable Input for Risk Reduction
- ► Four Pillars Establish Risk Based Process Safety
 - Understanding Hazards and Risks
 - Committing to Process Safety
 - 1. Developing and Sustaining a Culture that Embraces Process Safety
 - 2. Identifying, Understanding, & Complying With Codes, Standards, Regulations, and Laws
 - 3. Establishing and Continually Enhancing Organizational Competence
 - 4. Soliciting Input from Stakeholders Employees, Contractors, & Neighbors
 - Manage Risks
 - ▶ Learn from Experience

Chapter 1 Introduction to Guidelines

- Describes How HE Techniques Fit Into PSM Program
- ► Relates Use of HE Techniques to Risk Management
- Introduces Terminology Used for Evaluating Process Hazards In Context of a Typical Incident Sequence of Events
- ► Introduces Role of Safeguards in Preventing & Protecting Against Upsets & Mitigating the Impacts of Loss Events
- How HE Techniques can be Used Throughout Lifetime
- Outlines Important Theoretical & Practical Limitations of HE Techniques
- Summarizes Expectations from Use of HE Techniques

Chapter 2 Preparation of Hazard Evaluations

- Describes Infrastructure Needed to Support HE Program
- Gives Examples of Scope Statements for HE
- Outlines the Skills & Information for HE
- Addresses Schedule & Logistical Considerations for HE

Chapter 3 Hazard Identification Methods

- Importance of Identifying Hazards
- Contemporary Approaches for HI
- Use of Experience in Analyzing Material Properties & Process Conditions
- Several Structured Approaches for HE (with Examples)
- Describes Types of Results Expected from HI

Chapter 4 & 5 Hazard Evaluation Techniques

- ▶ Difference Between Scenario & Non-Scenario Based HE
- Non-Scenario Based
 - Experienced Based on Facility/Team Experience
 - Efficient at Broad Brush for Hazards Review
 - Applied Early in Design/Operation for Safety Improvement Efforts
- Scenario Based
 - Predictive & Analytical
 - Systematically Determine What Can Go Wrong
 - Systematically Determine Safeguards
 - ► Applied Throughout Process Lifecycle
 - Divided Into 2 Groups
 - ▶ Wide Range of Hazards
 - Specific Use in Special Situations

Chapter 4 Non-Scenario Hazard Evaluations

- Non-Scenario Based HE Techniques
 - ► Purpose, Description, Types of Results, Resource Requirements, & Analysis Procedure For Each Technique
- 4 Non-Scenario Based HE Techniques
 - Preliminary Hazards Analysis (PHA/PreHA)
 - Safety Review
 - Relative Ranking
 - Checklist Analysis
- ▶ Illustrates Each Method with a Brief Example

Chapter 5 Scenario Hazard Evaluations

- Scenario Based HE Techniques
 - ▶ Purpose, Description, Types of Results, Resource Requirements, & Analysis Procedure For Each Technique
- 8 Scenario Based HE Techniques
 - ▶ What-If Analysis
 - What-If/Checklist Analysis
 - ► Hazard & Operability (HazOp) Studies
 - Failure Modes & Effects Analysis (FMEA)
 - ► Fault Tree Analysis (FTA)
 - Event Tree Analysis (ETA)
 - Cause Consequence Analysis (CCA)
 - ► Human Reliability Analysis (HRA)
- ▶ Illustrates Each Method with a Brief Example

Chapter 6 Selection of HE Techniques

- ► Factors Influence Selection of Appropriate HE Technique
- Question Based Flowchart to Choose HE Technique
- ► Selection Criteria

Selection of HE Techniques

Chapter 7 Risk Based Determination

- Guidelines for More Detailed Evaluation of Scenario Risks
- Basic Concepts of Estimating Loss Event Impacts, Initiating Frequency, and Safeguard Effectiveness
- Examples Comparing Risks for Determining Adequacy of Safeguards
- Use of Layer of Protection Analysis (LOPA)

Chapter 8 Analysis Follow-Up

- Importance of Prioritizing Results
 - List of Identified Hazards
 - Description of Significance of Events/Hazards
 - ► Recommendations for Reducing/Eliminating Issues
 - ▶ Ideally Rank Solutions Versus Rank Problems
 - ▶ Rank Via Immediate Actions, Planned Actions, & Further Evaluations
- Importance of Documenting Results
 - ► Consolidate & Preserve Results for Future Use
 - Provide Evidence Performed Per Sound Engineering Principles
 - Support Other PSM Activities
- Guidelines for Communicating Results
- Strategies for Management of Change

Chapter 9 Extensions/Special Applications

- Combining Tools
 - ► HazOp with LOPA
 - ▶ What-If with LOPA
- Special Topics
 - ► Evaluating Hazards for:
 - ▶ Procedure Based Operations
 - ► Programmable Control Systems
 - ► Reactive Chemical Systems
 - Human Factors
 - ► Consideration of Human Factors
 - ► Completing Human Reliability Analysis
 - ► Facility Siting, Layout, & Facility-Based Personal Protection

Part II - Worked Examples

- Example Description of Facility & Process
- Example HI
- Example HE Techniques
 - ► R&D: What-If Analysis
 - Conceptual Design: PreHA
 - ▶ Pilot Plant: HAZOP
 - Detailed Engineering: FTA/ETA
 - ► Construction/Start-up: Checklist Analysis & Safety Review
 - ▶ Routine Operation: Safety Review for Management of Change
 - ▶ Routine Operation: HAZOP Study for Cyclic Review
 - ▶ Plant Expansion: Relative Ranking & HAZOP for Batch Process
 - ► Incident Investigation: FMEA & HRA
 - ▶ Decommissioning: What-If/Checklist Analysis

Guidelines - Appendices

- ► Example Checklists & Forms for HE
- ► Legend of Symbols & Abbreviations for Drawings
- Commercially Available Software Aids for Performing Hazard Evaluations
- ► Chemical Compatibility Chart
- Process Safety Enhancement Resources

Follow Up with Parvati

- Kelsey L. Forde, CIH, CHHM
 - klforde@parvaticorp.com
 - **(505) 967-8917**
- Timothy S. Stirrup, IH, REM
 - <u>tsstirrup@parvaticorp.com</u>
 - **(505)** 980-3743
- www.parvaticorp.com

- Facility/Worker Safety
 - Redbook Training
 - Redbook Overview
 - Redbook HE Techniques
 - What-If/Checklist
 - ► Failure Modes & Effects Analysis
 - ► Hazard & Operability Analysis
 - Layer of Protection Analysis (LOPA)
 - Risk Analysis
 - Inherent Safety Reviews
 - Perform Process Hazards Analysis
 - Facilitate Hazard Evaluations
 - Peer Review PHA (HI + HE)
 - ▶ STAMP/STPA
- ► Traditional ES&H/IH Services

