Leak Detection & Repair

Planning & Implementing an LDAR Program

Jonathan Eckles, CHMM Mallinckrodt Pharmaceuticals

AHMP 2016 National Conference Washington, D.C.

Introduction

Leak Detection & Repair = LDAR =

This is a quick summary of common LDAR program elements, challenges, and options. Key points discussed will include:

- Regulatory Considerations
- Leak Detection Methods
- Recordkeeping

Where Does LDAR Come From?

LDAR is typically invoked by NESHAP rules to control fugitive emissions (don't forget RCRA!)

The list on the right is from Appendix A of EPA's LDAR Best Practices Guide

http://www.epa.gov/compliance/resources/publications/assistance/ldarguide.ndf

RCRA Subpart BB is old by LDAR standards with generous leak definitions – and applies to LQG with <90 day tanks.

When 2 standards overlap, use the most stringent!

40 CFR		D
Part	Subpart	Regulation Title
60	W	SOCMI VOC Equipment Leaks NSPS
60	DDD	Votatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry
60	GGG	Petroleum Refinery VOC Equipment Leaks NSPS
60	KKK	Onshore Natural Gas Processing Plant VOC Equipment Leaks NSPS
61	J	National Emission Standard for Equipment Leaks (Fugitive Emission Sources) o Banzane
61	٧	Equipment Leaks NESHAP
63	H	Organic HAP Equipment Leak NESHAP (HON)
63	1	Organic HAP Equipment Leak NESHAP for Certain Processes
63	J	Polyvinyl Chloride and Copolymers Production NESHAP
63	R	Gasoline Distribution Facilities (Bulk Gasoline Terminals and Pipeline Breakout Stations)
63	CC	Hazardous Air Pollutants from Petroleum Refineries
63	DD	Hazardous Air Pollutants from Off-Site Waste and Recovery Operations
63	SS	Closed Vent Systems, Control Devices, Recovery Devices and Routing to a Fuel Gas System or a Process
63	П	Equipment Leaks – Control Level 1
63	UU	Equipment Leaks - Control Level 2
63	YY	Hazardous Air Pollutants for Source Categories: Generic Maximum Achievable Control Technology Standards
63	GGG	Pharmaceuticals Production
63	III	Hazardous Air Pollutants from Flexible Polyurethane Foam Production
63	MMM	Hazardous Air Pollutants for Pesticide Active Ingredient Production
63	FFFF	Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing
63	GGGGG	Hazardous Air Pollutants: Site Remediation
63	ннннн	Hazardous Air Pollutants: Miscellaneous Coating Manufacturing
65	F	Consolidated Federal Air Rule – Equipment Leaks
265	BB	Air Emission Standards for Equipment Leaks

Study, Study, Study the Rules

Subpart H—National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks

Contents

98. 100. Applicability and designation of source

98. 101. Definitions — \$60. 100. \$10. Definitions — \$60. \$10. Definitions — \$60.

Sometimes the rules are a hybrid of several regulations, which takes time to unravel

Understand Your Exemptions

- Get Hooked on classics like <300 hours, inaccessible, unsafe to monitor, leakless valves, sealless pumps, etc.
- Dabble in the obscure exemptions for instrumentation, glass & ceramic equipment, lab equipment, as well as rule-specific treats.

KEY POINT: Keep a list of any exemptions that may apply and a detailed inventory of which components qualify for the exemption

Easter Eggs!

Take advantage of rulespecific allowances and definitions; but stake your claims early! You probably can't invoke an exemption after the fact during an inspection...

Count Your Population

- Component counts are key for effective programs and can be a source of enforcement.
- Keep an up to date list of each category of covered components and exempted ones too.
- Tagging is not always required do you need it?
- Keep the list up to date (MOCs?)
- Beware of cascading violations

Methods for LDAR Madness!

- Understand the methods and alternatives even if you don't do the monitoring yourself.
- Method 21 is the gold standard everyone is compared against – and the easiest to audit
- Pressure testing is a mixed blessing but has distinct advantages (and limitations)
- Remember the sensory method has merit too

KEY POINT: Know which test methods your rule permits and then decide how to implement each method at your facility.

Audible, Visual, and Olfactory detection method (aka: sensory leak detection). In some cases the sensory method is sufficient to meet LDAR requirements – such as MON or 6V Area Source Rule. In most cases it will also start your leak repair clock (5/15).

Method 21 - The Albatross

The equipment is heavy, bulky, and usually carried around like an albatross

Method 21 is the gold standard of LDAR, providing a clear quantitative result.

Most leak definitions are based on Method 21.

There are well defined calibration requirements, quarterly drift tests, and sampling guidelines.

Managing the 5/15 Clock 《

- Most LDAR programs require a first attempt at repair within 5 days of discovering a leak and repair completion within 15 days.
- Anyone can discover a leak, which is both good and bad. Be sure any leak discovered is tracked in the LDAR program – even if it was discovered by somebody else.
- Consider methods to track repairs to covered equipment: even non-LDAR repairs may require leak testing prior to putting the equipment in service.

Recordkeeping is Critical

- Keeping good records is a critical part of any LDAR program.
 - Written LDAR Procedures & Training
 - Instrument Calibration Records
 - Component Counts & Classifications
 - Monitoring & Repair Records
- Be sure you know how to find/access LDAR records
- If a contractor manages your LDAR database, how do you get access?

Putting it All Together

- Understand the underlying regulations
- Maintain a current inventory (including exempt items)
- Have a written program that includes your covered equipment, testing procedures, and record keeping
- Ensure you have quick access to any 3rd party information you may need during an audit.
- If you do your own Method 21 remember cal gas dates, daily checks, & quarterly drift test

