
HE Selection Criteria Lifecycle Based Comparison

Non-Scenario Technique Preliminary Hazards Analysis

- Purpose:
 - Evaluate Hazards Early in Lifecycle
 - Identify the Basic Risk Control Strategies to be Developed Later in Lifecycle
- Description:
 - Formulates List of Hazards and Generic Hazardous Situations By Considering Process Characteristics Rather Than Specific Process Information
- Type of Results:
 - Qualitative Description of the Hazards With Qualitative Ranking of Hazardous Situations
 Used to Prioritize Recommendations
- Resource Requirements:
 - Limited Process Information; 1 2 Experienced Analyst; 5 17 Days Duration
- Analysis Procedure:
 - Collect Information (Typically Limited)
 - Identify Hazards, Safeguards, Causes, & Effects
 - Assign Hazard Category: Negligible, Marginal, Critical, & Catastrophic
 - Identify Potential Controls
 - Documenting Results:
 - Typically Recorded in Simple Table Format

Non-Scenario Technique

[Inherent] Safety Review

- Purpose:
 - Ensure Operation & Maintenance Meet Design Intent and/or Standards
 - Performed as a Pre-Startup Safety Review
- Description:
 - Walkthrough Inspection, Design Review, and/or Interviews Against Requirements
- Type of Results:
 - Qualitative Description of the Potential Safety Problems & Suggested Corrective Actions For Identified Deviations & Newly Discovered Safety Items
- Resource Requirements:
 - Detailed Design, Process, and Procedural Information; Small Team of Well Qualified Analyst;
 2 14 Days Duration
- Analysis Procedure:
 - Collect Detailed Information (Design, Codes/Standards, Equipment Information)
 - Formal Team Meeting(s)
 - Review Hazards & Related Requirements (i.e. Codes, Standards, Procedures)
 - Process Review & Inspection Walkthroughs, Design Reviews, & Interviews
 - Documenting Results:
 - Formal Report with Recommendations for Deviations, Discoveries, & Improvements

Non-Scenario Technique

Relative Ranking

- Purpose:
 - Determine Most Significant Areas of Concern
 - Rank Areas of Concern Before More Intensive Reviews
- Description:
 - Use of Index to Rank Hazards/Hazardous Situations
 - Index Based on 3 Questions ~ What Can Go Wrong? Impact? Likely?
- Type of Results:
 - Ordered List of Processes, Equipment, Operations, or Activities
 - Not Typically Used for Analysis of Safeguards
- Resource Requirements:
 - Basic Physical & Chemical Information; Single Analyst; 1 4 Days Duration
- Analysis Procedure:
 - Collect Basic Material/Process Information
 - Assign Relative Ranking Based on 3 Questions (Qualitative vs Quantitative)
 - Rank Hazards/Hazardous Situations
 - Documenting Results:
 - Simple List Ranking Hazards/Hazardous Situations
 - Potential Identification of Safety Weaknesses and Corrective Measures

Non-Scenario Technique

Checklist Analysis

- Purpose:
 - Verification of System Status Using Written List of Requirements/Procedural Steps
- Description:
 - List of Known Hazards, Design Deficiencies, and Incidents
 - List of Requirements/Procedural Steps
 - List of Other Parameters (e.g., chemical properties, codes/standards)
- Type of Results:
 - Typically List with "No," "Yes," or "Not Applicable" & Associated Corrections
- Resource Requirements:
 - Information to Create Checklist; Single Analyst; 2 12 Days Duration
 - Creating Checklist is Intensive Effort
- Analysis Procedure:
 - Select Checklist
 - Perform Walkthrough, Design, Procedure, Codes/Standards Review
 - Documenting Results:
 - Qualitative Report (w/ Completed Checklist) & Recommendations
 - Potential for Inherent Safety Review ~ Minimization, Moderation, & Simplification

What-If Analysis

- Purpose:
 - Brainstorming Approach to Identify Hazards/Hazardous Situations, or Event Sequences with <u>Potential Undesirable</u> Consequences ~ May Include Cause/Initiating Events
- Description:
 - Use of Facilitator, Scribe, & Team
 - Not Inherently Structured, Requires Skilled Facilitator
 - Ideally Divide Questions Based on Hazards and/or Process Areas
 - What If Can Be Effective & Efficient With Experienced Team/Facilitator
- Type of Results:
 - Random Tabular Listing of Hazardous Situations with Consequences & Safeguards
- Resource Requirements:
 - Supporting Information; Representative Team; 1 29 Days Duration
- Analysis Procedure:
 - Collect Chemical Data, Process Description, Drawings, & Operating Procedures
 - Seed Analysis Tables for Workshop Meetings For Team Brainstorming
 - Documenting Results:
 - Qualitative Report (w/ Completed What If Analysis Worksheet) & Recommendations
 - Potential for Inherent Safety Review ~ Resolve "What-If Question"
 - May Provide Input into Further More Refine HE Analysis

What-If/Checklist Analysis

- Purpose:
 - Systematic Use of Checklist Using Brainstorming Approach to Identify Hazards/Hazardous Situations, or Event Sequences with Potential Undesirable Consequences ~ May Include Cause/Initiating Events
- Description:
 - Use of Facilitator, Scribe, & Team ~ Requires Skilled Facilitator
 - Structured Approach to Identify All Hazards/Hazardous Situations
- Type of Results:
 - Systematic Tabular Listing of Hazardous Situations with Consequences & Safeguards
- Resource Requirements:
 - Supporting Information; Representative Team; 1 31 Days Duration
- Analysis Procedure:
 - Collect Chemical Data, Process Description, Drawings, & Operating Procedures
 - Seed Analysis Tables for Workshop Meetings For Team Brainstorming
 - Qualitatively Determine Significant of Effects and Relative Recommendations
 - Documenting Results:
 - Qualitative Report (w/ Completed What If Analysis Worksheet) & Recommendations
 - Potential for Inherent Safety Review ~ Resolve "What-If Question"
 - May Provide Input into Further More Refine HE Analysis

Scenario Technique Hazard and Operability Study

- Purpose:
 - Careful, Systematic Review to Determine Whether Deviations Can Lead to Undesirable Consequences
 - Identification of Causes, Consequences, & Safeguards for Process Nodes
- Description:
 - Use of "Prescribed" Terminology Guidewords + Parameters = Deviation
 - Use of Facilitator, Scribe, & Team ~ Requires Skilled Facilitator & Trained Team
 - Systematically Identify Hazard & Operability Problems
- Type of Results:
 - Deviations for Each Node Recorded in Table Format With Consequences & Safeguards
- Resource Requirements:
 - Extremely Detailed P&ID; Highly Skilled, Trained Team; 13 86 Days Duration
- Analysis Procedure:
 - Explicitly Define Purpose, Scope, & Objectives
 - Collect Supporting Information Prior to Workshop So Team Can Prepare
 - Determine Nodes, Standard Guidelines, Deviations, & Safeguards
 - Complete Node by Node
 - Documenting Results:
 - Tabular Format with Separate Action Items

Failure Modes and Effects Analysis

- Purpose:
 - Identify Single Component/System Failure Modes, Causes, Effects, & Actions
 - How Can Equipment Fail, What Are Causes, & What Are Effects
- Description:
 - Evaluates How Equipment Can Fail and Effects of Failures on Process
 - Use of Facilitator, Scribe, & Team ~ Requires Skilled Facilitator & Trained Team
 - Systematically Evaluates @ Equipment/Component Level (e.g., pieces & parts)
- Type of Results:
 - Failure Modes, Causes, Effects, & Safeguards for Each Equipment in Table Format
- Resource Requirements:
 - Extremely Detailed P&ID, Equipment Functions; Trained Team; 7 42 Days Duration
- Analysis Procedure:
 - Define Problem (Boundaries) & Resolution Level ~ Typically Lowest Level Analysis
 - Detailed Equipment Descriptions & Unique System, Equipment, & Component Identifiers
 - List All Failure Modes with Specific Equipment, Then Analyze Cause/Effect/Actions
 - Documenting Results:
 - Systematic & Consistent Tabulation of Effects from Equipment Failure
 - Equipment Identification Allows One-on-Correlation to System

Fault Tree Analysis

- Purpose:
 - Deductive Technique Focusing On A Single Incident or System Failure
 - Identify Combinations of Equipment Failures & Human Errors Resulting In Incidents
- Description:
 - Graphical Model That Displays Combinations of Equipment/Human Failures
 - Single Analyst (or Team) with Input & Review by Process Engineers
 - Systematically Evaluates "Top Event" With Specific Logic /Event Symbols & Definitions
- Type of Results:
 - System Failure Models with Boolean (and, or) Logic Gates to Describe Failures
- Resource Requirements:
 - Extreme System Knowledge; Qualified Analyst/Experienced Team; 9 100 Days Duration
- Analysis Procedure:
 - Define Problem Via Top Event & Boundary Conditions
 - Construct Fault Tree Model/Analyze Fault Tree Model
 - Documenting Results:
 - Formal Report with System Description, Problem Definition, Assumptions, & FTA Models

Event Tree Analysis

- Purpose:
 - Inductive Technique Focusing On A Single Incident or System Failure
 - Graphic Representation of Possible Outcomes of Success/Failure of Protective Systems
 Following Specific Initiating Cause
- Description:
 - Graphical Listing of Incidents That Can Occur ~ Event Sequences
 - Single Analyst or Team for Brainstorming
- Type of Results:
 - Event Tree Models with System Sequence for Failures
- Resource Requirements:
 - Extreme System Knowledge; Trained Analyst; 6 80 Days Duration
- Analysis Procedure:
 - Identify Initiating Causes or Loss Events & Safeguards
 - Constructing Event Tree
 - Describing Resulting Event Sequence Outcomes
 - Determining Minimum Cut Sets (Shortest Branch)
 - Documenting Results:
 - Formal Report with System Description, Problem Definition, Incident Initiating Cause, Assumptions, & Minimum Cut Sets

Scenario Technique Cause-Consequence Analysis

- Purpose:
 - Blend of FTA & ETA
 - Graphic Representation to Identify Causes and Consequences of Potential Incidents
- Description:
 - Inductive Features of ETA with Deductive Features of FTA
 - Cause-Consequence Diagram Displays Relationship Between Outcomes & Causes
 - Typically Simple Systems Otherwise Graphically Overwhelming
- Type of Results:
 - Diagrams with Incident Sequences and Qualitative Descriptions of Potential Incident Outcomes
- Resource Requirements:
 - System & Safeguards Knowledge; Trained Analyst; Small Team; 6 70 Days Duration
- Analysis Procedure:
 - Selecting Event or Type of Incident & Identifying Safeguards
 - Develop Event Sequence Paths & Intermediate Events With Safeguard Failures
 - Evaluate Event Sequence Minimum Cut Sets
 - Documenting Results:
 - Formal Report with System Description, Problem Definition, Incident Initiating Cause, Assumptions, Cause-Consequence Diagrams, & Minimum Cut Sets

What About Risk?

Consequence x Frequency = Risk

- Adequacy of Existing Safeguards
- Risk As Low As Reasonably Practicable
- Qualitative vs. Quantitative Analysis
 - Frequency = Initiating Event x Safeguard Failure
 - Consequence Severity
 - Frequency/Likelihood (Numeric vs. Descriptive)
- Control Analysis
 - Frequency Reduction ~ Preventative
 - Consequence Reduction ~ Mitigative
- Risk Binning
- Layer of Protection Analysis